Gurdon, Yamanaka win Nobel medicine prize

By Louise Nordstrom

Associated Press

Published: Monday, Oct. 8 2012 7:33 a.m. MDT

In this April, 2008 photo, Kyoto University Professor Shinya Yamanaka, left, and British researcher John Gurdon exchange words as they attend a symposium on induced pluripotent stem cell in Tokyo. Gurdon and Yamanaka of Japan won this year's Nobel Prize in physiology or medicine on Monday, Oct. 8, 2012 for discovering that mature, specialized cells of the body can be reprogrammed into stem cells - a discovery that scientists hope to turn into new treatments.

Kyodo News, Associated Press

STOCKHOLM — A British researcher and a Japanese scientist won the Nobel Prize in physiology or medicine on Monday for discovering that ordinary cells of the body can be reprogrammed into stem cells, which then can turn into any kind of tissue — a discovery that may led to new treatments.

Scientists want to build on the work by John Gurdon and Shinya Yamanaka to create replacement tissues for treating diseases like Parkinson's and diabetes, and for studying the roots of diseases in the laboratory — without the ethical dilemma posed by embryonic stem cells.

In announcing the 8 million kronor ($1.2 million) award, the Nobel committee at Stockholm's Karolinska Institute said the discovery has "revolutionized our understanding of how cells and organisms develop."

Gurdon showed in 1962 — the year Yamanaka was born — that the DNA from specialized cells of frogs, like skin or intestinal cells, could be used to generate new tadpoles. That showed the DNA still had its ability to drive the formation of all cells of the body.

At the time, the discovery had "no obvious therapeutic benefit at all," Gurdon told reporters in London.

"It was almost 50 years before the value — the potential value — of that basic scientific research comes to light," he said.

In 1997, the cloning of Dolly the sheep by other scientists showed that the same process Gurdon discovered in frogs would work in mammals.

More than 40 years after Gurdon's discovery, in 2006, Yamanaka showed that a surprisingly simple recipe could turn mature cells back into primitive cells, which in turn could be prodded into different kinds of mature cells.

Basically, the primitive cells were the equivalent of embryonic stem cells, which had been embroiled in controversy because to get human embryonic cells, human embryos had to be destroyed. Yamanaka's method provided a way to get such primitive cells without destroying embryos.

"The discoveries of Gurdon and Yamanaka have shown that specialized cells can turn back the developmental clock under certain circumstances," the committee said. "These discoveries have also provided new tools for scientists around the world and led to remarkable progress in many areas of medicine."

Just last week, Japanese scientists reported using Yamanaka's approach to turn skin cells from mice into eggs that produced baby mice.

Gurdon, 79, has served as a professor of cell biology at Cambridge University's Magdalene College and is currently at the Gurdon Institute in Cambridge, which he founded. Yamanaka, 50, worked at the Gladstone Institute in San Francisco and Nara Institute of Science and Technology in Japan. He is currently at Kyoto University and also affiliated with the Gladstone Institute. Yamanaka is the first Japanese scientist to win the Nobel medicine award since 1987.

Yamanaka told Japanese broadcaster NHK that he was at home doing chores on Monday when he got the call from Stockholm.

"Even though we have received this prize we have not really accomplished what we need to. I feel a deep sense of duty and responsibility," Yamanaka said.

Choosing Yamanaka as a Nobel winner just six years after his discovery was unusual. The Nobel committees typically reward research done more than a decade before, to make sure it has stood the test of time.

In 2010, the Nobel Prize in physics went to two researchers whose discoveries were also published six years earlier. In 2006, two American scientists won the medicine prize eight years after their work was published.

Get The Deseret News Everywhere

Subscribe

Mobile

RSS